Engineering Properties and Correlation Analysis of Fiber Cementitious Materials
نویسندگان
چکیده
This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.
منابع مشابه
Durable Glass Fiber Reinforced Concrete with Supplimentary Cementitious Materials
Durability of concrete structure in marine environments is a big issue for many decades due to chloride attack. Chloride penetrates the concrete structure and accelerates the corrosion process of reinforcement which decreases the life of those structures. Also shrinkage cracks in concrete play main role for chloride penetration through concrete surface. Many researchers tried to find easy and ...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملStudy of effect of paste volume, water to cementitious materials and fiber dosages on rheological properties and in-situ strength of self-compacting concrete
As a vibration- free concrete, self- compacting concrete (SCC) can be easily used in the absence of consolidation, therefore; it is a good option for repairing and retrofitting concrete structures. The quality of repair layer is highly effective on a successful repair. Accordingly, in this study, factors affecting the quality of fiber-reinforced self-compacting concrete repair layer, including ...
متن کاملRheology, fiber dispersion, and robust properties of Engineered Cementitious Composites
The capability of processing robust Engineered Cementitious Composites (ECC) materials with consistent mechanical properties is crucial for gaining acceptance of this new construction material in various structural applications. ECC’s tensile strainhardening behavior and magnitude of tensile strain capacity are closely associated with fiber dispersion uniformity, which determines the fiber brid...
متن کاملExperimental investigation of mechanical and dynamic impact properties of high strength cementitious composite containing micro steel and PP fibers
Cementitious composites are one of the most consumed construction materials in the world. The use of cementitious composites is increasing due to their special characteristics. The behavior of high strength cementitious composites is improved by increasing the fiber percentage. In the present paper, the effects of steel microfibers and polypropylene fibers on mechanical properties and impact re...
متن کامل